Rapid recalibration to audiovisual asynchrony.
نویسندگان
چکیده
To combine information from different sensory modalities, the brain must deal with considerable temporal uncertainty. In natural environments, an external event may produce simultaneous auditory and visual signals yet they will invariably activate the brain asynchronously due to different propagation speeds for light and sound, and different neural response latencies once the signals reach the receptors. One strategy the brain uses to deal with audiovisual timing variation is to adapt to a prevailing asynchrony to help realign the signals. Here, using psychophysical methods in human subjects, we investigate audiovisual recalibration and show that it takes place extremely rapidly without explicit periods of adaptation. Our results demonstrate that exposure to a single, brief asynchrony is sufficient to produce strong recalibration effects. Recalibration occurs regardless of whether the preceding trial was perceived as synchronous, and regardless of whether a response was required. We propose that this rapid recalibration is a fast-acting sensory effect, rather than a higher-level cognitive process. An account in terms of response bias is unlikely due to a strong asymmetry whereby stimuli with vision leading produce bigger recalibrations than audition leading. A fast-acting recalibration mechanism provides a means for overcoming inevitable audiovisual timing variation and serves to rapidly realign signals at onset to maximize the perceptual benefits of audiovisual integration.
منابع مشابه
Event Related Potentials Index Rapid Recalibration to Audiovisual Temporal Asynchrony
Asynchronous arrival of multisensory information at the periphery is a ubiquitous property of signals in the natural environment due to differences in the propagation time of light and sound. Rapid adaptation to these asynchronies is crucial for the appropriate integration of these multisensory signals, which in turn is a fundamental neurobiological process in creating a coherent perceptual rep...
متن کاملNo rapid audiovisual recalibration in adults on the autism spectrum
Autism spectrum disorders (ASD) are characterized by difficulties in social cognition, but are also associated with atypicalities in sensory and perceptual processing. Several groups have reported that autistic individuals show reduced integration of socially relevant audiovisual signals, which may contribute to the higher-order social and cognitive difficulties observed in autism. Here we use ...
متن کاملA Matched Comparison Across Three Different Sensory Pairs of Cross-Modal Temporal Recalibration From Sustained and Transient Adaptation
Sustained exposure to an asynchronous multisensory signal causes perceived simultaneity to shift in the direction of the leading component of the adapting stimulus. This is known as temporal recalibration, and recent evidence suggests that it can occur very rapidly, even after a single asynchronous audiovisual (AV) stimulus. However, this form of rapid recalibration appears to be unique to AV s...
متن کاملAudiovisual temporal recalibration occurs independently at two different time scales
Combining signals across the senses improves precision and speed of perception, although this multisensory benefit declines for asynchronous signals. Multisensory events may produce synchronized stimuli at source but asynchronies inevitably arise due to distance, intensity, attention and neural latencies. Temporal recalibration is an adaptive phenomenon that serves to perceptually realign physi...
متن کاملAdaptation minimizes distance - related audiovisual delays Department of Optometry , University of Bradford , Bradford , UK
A controversial hypothesis within the domain of sensory research is that observers are able to use visual and auditory distance cues to maintain perceptual synchronyVdespite the differential velocities of light and sound. Here we show that observers are categorically unable to utilize such distance cues. Nevertheless, given a period of adaptation to the naturally occurring audiovisual asynchron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 37 شماره
صفحات -
تاریخ انتشار 2013